[1] Poganik, J., Zhang, B., Baht, G., Kerepesi, C., Yim, S., & Lu, A. et al. (2022). Biological age is increased by stress and restored upon recovery. doi: 10.1101/2022.05.04.490686
[2] Razzoli, M., Nyuyki-Dufe, K., Chen, B. H., & Bartolomucci, A. (2023). Contextual modifiers of healthspan, lifespan, and epigenome in mice under chronic social stress. Proceedings of the National Academy of Sciences of the United States of America, 120(16), e2211755120. doi: 10.1073/pnas.2211755120
[3] Anthony S. Zannas (2019) Epigenetics as a key link between psychosocial stress and aging: concepts, evidence, mechanisms, Dialogues in Clinical Neuroscience, 21:4, 389-396. doi: 10.31887/DCNS.2019.21.4/azannas
[4]Sloan, E., Capitanio, J., & Cole, S. (2008). Stress-induced remodeling of lymphoid innervation. Brain, Behavior, And Immunity, 22(1), 15-21. doi: 10.1016/j.bbi.2007.06.011
[5] Kaye, J., & Lightman, S. (2005). Psychological stress and endocrine axes. Human Psychoneuroimmunology, 25-52. doi: 10.1093/med:psych/9780198568841.003.0002
[6] Flaherty, R., Owen, M., Fagan-Murphy, A., Intabli, H., Healy, D., & Patel, A. et al. (2017). Glucocorticoids induce production of reactive oxygen species/reactive nitrogen species and DNA damage through an iNOS mediated pathway in breast cancer. Breast Cancer Research, 19(1). doi: 10.1186/s13058-017-0823-8
[7] Hara, M., Kovacs, J., Whalen, E., Rajagopal, S., Strachan, R., & Grant, W. et al. (2011). A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature, 477(7364), 349-353. doi: 10.1038/nature10368
[8] Aschbacher, K., O’Donovan, A., Wolkowitz, O., Dhabhar, F., Su, Y., & Epel, E. (2013). Good stress, bad stress and oxidative stress: Insights from anticipatory cortisol reactivity. Psychoneuroendocrinology, 38(9), 1698-1708. doi: 10.1016/j.psyneuen.2013.02.004
[9] Rodier, F., & Campisi, J. (2011). Four faces of cellular senescence. Journal Of Cell Biology, 192(4), 547-556. doi: 10.1083/jcb.201009094
[10] Campisi, J., & d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nature Reviews Molecular Cell Biology, 8(9), 729-740. doi: 10.1038/nrm2233
[11] Maggiorani, D., Manzella, N., Edmondson, D., Mattevi, A., Parini, A., Binda, C., & Mialet-Perez, J. (2017). Monoamine Oxidases, Oxidative Stress, and Altered Mitochondrial Dynamics in Cardiac Ageing. Oxidative Medicine And Cellular Longevity, 2017, 1-8. doi: 10.1155/2017/3017947
[12] Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., & Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17312–17315. doi: 10.1073/pnas.0407162101
[13] Carroll, J., Mahrer, N., Shalowitz, M., Ramey, S., & Dunkel Schetter, C. (2020). Prenatal maternal stress prospectively relates to shorter child buccal cell telomere length. Psychoneuroendocrinology, 121, 104841. doi: 10.1016/j.psyneuen.2020.104841
[14] Thomas, N., Hudaib, A. R., Romano-Silva, M., Bozaoglu, K., H X Thomas, E., Rossell, S., Kulkarni, J., & Gurvich, C. (2022). Influence of cortisol awakening response on telomere length: Trends for males and females. The European journal of neuroscience, 55(9-10), 2794–2803. doi: 10.1111/ejn.14996
[15] Davis, E., Humphreys, K., McEwen, L., Sacchet, M., Camacho, M., & MacIsaac, J. et al. (2017). Accelerated DNA methylation age in adolescent girls: associations with elevated diurnal cortisol and reduced hippocampal volume. Translational Psychiatry, 7(8), e1223-e1223. doi: 10.1038/tp.2017.188
[16] Zannas, A. S., Jia, M., Hafner, K., Baumert, J., Wiechmann, T., Pape, J. C., Arloth, J., Ködel, M., Martinelli, S., Roitman, M., Röh, S., Haehle, A., Emeny, R. T., Iurato, S., Carrillo-Roa, T., Lahti, J., Räikkönen, K., Eriksson, J. G., Drake, A. J., Waldenberger, M., … Binder, E. B. (2019). Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-κB-driven inflammation and cardiovascular risk. Proceedings of the National Academy of Sciences of the United States of America, 116(23), 11370–11379. doi: 10.1073/pnas.1816847116
[17] Passos, J. F., & von Zglinicki, T. (2005). Mitochondria, telomeres and cell senescence. Experimental gerontology, 40(6), 466–472. doi: 10.1016/j.exger.2005.04.006
[18] Marzetti, E., Csiszar, A., Dutta, D., Balagopal, G., Calvani, R., & Leeuwenburgh, C. (2013). Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. American journal of physiology. Heart and circulatory physiology, 305(4), H459–H476. doi: 10.1152/ajpheart.00936.2012
[19]Polsky, L., Rentscher, K., & Carroll, J. (2022). Stress-induced biological aging: A review and guide for research priorities. Brain, Behavior, And Immunity, 104, 97-109. doi: 10.1016/j.bbi.2022.05.016
[20] Rentscher, K. E., Carroll, J. E., Repetti, R. L., Cole, S. W., Reynolds, B. M., & Robles, T. F. (2019). Chronic stress exposure and daily stress appraisals relate to biological aging marker p16INK4a. Psychoneuroendocrinology, 102, 139–148. doi: 10.1016/j.psyneuen.2018.12.006
[21] Irwin, M. R., & Cole, S. W. (2011). Reciprocal regulation of the neural and innate immune systems. Nature reviews. Immunology, 11(9), 625–632. doi: 10.1038/nri3042
[22] Miller, G. E., Murphy, M. L., Cashman, R., Ma, R., Ma, J., Arevalo, J. M., Kobor, M. S., & Cole, S. W. (2014). Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain, behavior, and immunity, 41, 191–199. doi: 10.1016/j.bbi.2014.05.016
[23] Conboy, I., & Rando, T. (2012). Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle, 11(12), 2260-2267. doi: 10.4161/cc.20437
[24] Zhang, B., Lee, D., Trapp, A., Tyshkovskiy, A., Lu, A., & Bareja, A. et al. (2021). Multi-omic rejuvenation and lifespan extension upon exposure to youthful circulation. doi: 10.1101/2021.11.11.468258
[25] McEwen, B. (1993). Stress and the Individual. Archives Of Internal Medicine, 153(18), 2093. doi: 10.1001/archinte.1993.00410180039004
[26] Klainin-Yobas, P., Oo, W. N., Suzanne Yew, P. Y., & Lau, Y. (2015). Effects of relaxation interventions on depression and anxiety among older adults: a systematic review. Aging & mental health, 19(12), 1043–1055. doi: 10.1080/13607863.2014.997191
[27] Song, C., Ikei, H., Kagawa, T., & Miyazaki, Y. (2019). Effects of Walking in a Forest on Young Women. International journal of environmental research and public health, 16(2), 229. doi: 10.3390/ijerph16020229
[28] Zhang, C., Mayer, D. M., & Hwang, E. (2018). More is less: Learning but not relaxing buffers deviance under job stressors. The Journal of applied psychology, 103(2), 123–136. doi: 10.1037/apl0000264